Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 343: 140224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734506

RESUMEN

The overuse of plastics has led to a large influx of microplastics (MPs) in water bodies and water/wastewater treatment plants. Coupled with the ongoing water crisis, this poses a threat to freshwater availability as MPs disrupt the operation of these plants. MPs cause severe fouling of low-pressure membrane technologies such as ultrafiltration (UF) due to the strong adhesion between MPs and the membrane surface. An electrified membrane-based technology is suggested as an alternative MP fouling mitigation strategy. In this study, composite membranes of sulfonated polyethersulfone (SPES)/MXene (Ti3C2Tx) were fabricated and evaluated as a promising candidate for mitigating fouling of MPs. The described SPES/Ti3C2Tx composite membrane was designed to improve important physiochemical properties such as conductivity without affecting water flux. The membranes were tested under different electrical potentials to find an optimal strategy to reduce MP fouling. The performance tests showed that the flux increased from 42 L m-2. h-1 at 0 V to 49 L m-2. h-1 at 2 V due to electrostatic repulsion when 5 wt% Ti3C2Tx was used as a result of the applied electric potential. In addition, it was shown that intermittent applied voltage using "30 min ON: 60 min OFF" mode resulted in more stable water flux due to in-situ coagulant formation and cleaning. This study illustrates the potential of MXene-based membranes for mitigating MP fouling and paves the way for future research on membrane materials that can enhance system performance.


Asunto(s)
Plásticos , Purificación del Agua , Microplásticos , Titanio , Membranas Artificiales , Ultrafiltración/métodos , Purificación del Agua/métodos
2.
Environ Res ; 204(Pt D): 112390, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34838760

RESUMEN

In recent years, bimetallic oxide nanoparticles have garnered significant attention owing to their salient advantages over monometallic nanoparticles. In this study, Fe2O3-Mn2O3 nanoparticles were synthesized and used as nanomodifiers for polyethersulfone (PES) ultrafiltration membranes. A NIPS was used to fabricate asymmetric membranes. The effect of nanoparticle concentration (0-1 wt.%) on the morphology, roughness, wettability, porosity, permeability, and protein filtration performance of the membranes was investigated. The membrane containing 0.25 wt% nanoparticles exhibited the lowest water contact angle (67°) and surface roughness (10.4 ± 2.8 nm) compared to the other membranes. Moreover, this membrane exhibited the highest porosity (74%) and the highest pure water flux (398 L/m2 h), which was 16% and 1.9 times higher than that of the pristine PES membrane. The modified PES membranes showed an improved antifouling ability, especially against irreversible fouling. Bovine serum albumin protein-based dynamic five-cycle filtration tests showed a maximum flux recovery ratio of 77% (cycle-1), 67% (cycle-2), and 65.8% (cycle-5) for the PES membrane containing 0.25 wt% nanoparticles. Overall, the biphasic Fe2O3-Mn2O3 nanoparticles were found to be an effective nanomodifier for improving the permeability and antifouling ability of PES membranes in protein separation and water treatment applications.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Óxidos , Permeabilidad , Polímeros , Sulfonas
3.
Chemosphere ; 286(Pt 2): 131799, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34364235

RESUMEN

Hydroxyapatite-decorated activated carbon (HAp/AC) nanocomposite was synthesized and utilized as a nanofiller to fabricate a novel type of polyethersulfone (PES) nanocomposite ultrafiltration (UF) membranes. Activated carbon (AC) derived from orange peel was synthesized by low-temperature pyrolysis at 400 °C. A hydroxyapatite/AC (HAp/AC) nanocomposite was developed by a simple one-pot hydrothermal synthesis method. The UF membrane was fabricated by intercalating HAp/AC fillers into PES casting solution by the non-solvent induced phase separation (NIPS) process. The prepared membranes exhibited a lower water contact angle than the pristine PES membrane. The hybrid membrane with 4 wt% HAp/AC nanocomposite displayed 4.6 times higher pure water flux (~660 L/m2 h) than that of the pristine membrane (143 L/m2 h). In static adsorption experiments, it was found that the amount of humic acid (HA) and bovine serum albumin (BSA) adsorbed by the HAp/AC-PES hybrid membrane was much lower than that of the original membrane due to the electrostatic repulsive forces between them and the surface of the membrane. Irreversible fouling was reduced from 33 to 6 % for HA and from 46 to 8 % for BSA after HAp/AC was incorporated into the PES matrix. After 7 cycles of water-BSA-water, the HAp/AC-PES hybrid membrane maintained a high pure water flux of 540 L/m2 h with an excellent flux recovery ratio (FRR), demonstrating the long-term stability of the membranes. The developed UF membranes outperformed the original PES membranes in terms of permeability, selectivity, and antifouling.


Asunto(s)
Nanocompuestos , Ultrafiltración , Carbón Orgánico , Durapatita , Membranas Artificiales , Permeabilidad , Agua
4.
Environ Res ; 204(Pt B): 112113, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34563528

RESUMEN

Nanomodification of ultrafiltration (UF) membranes has been shown to be a simple and efficient technique for the preparation of high-performance membranes. In this work, an iron oxide functionalized halloysite nanoclay (Fe-HNC) nanocomposite was prepared and used as a nanofiller for polyethersulfone (PES) membranes. The effect of Fe-HNC concentration on the filtration performance of the membrane was investigated by varying the nanocomposite dosage (0-0.5 wt %) in the casting dope. Various characterization studies showed that the incorporation of Fe-HNC nanocomposites improved the membrane morphology and enhanced the surface properties, thermal stability, mechanical strength, hydrophilicity, and porosity. The permeability to pure water and filtration of humic acid (HA) were significantly improved by incorporating Fe-HNC into the PES membranes. The membrane with Fe-HNC loading of 0.1 wt % exhibited the highest pure water permeability (174.3 L/(m2 h bar)) and removal of HA (90.1 %), which were 1.8 times and 29 % higher, respectively than the pristine PES membrane. Moreover, fouling studies showed the enhanced antifouling ability of the Fe-HNC nanocomposites modified PES membranes, especially against irreversible fouling. Continuous membrane regeneration-based fouling removal studies from HA showed that the PES/0.1 wt % Fe-HNC membrane exhibited a high fouling recovery of 70.4 % with very low reversible and irreversible fouling resistance of 9.61 % and 14.78 %, respectively, compared to the pristine PES membrane (fouling recovery: 40.4 %; reversible fouling: 21.7 %; irreversible fouling: 20.1 %). Overall, the Fe-HNC nanocomposite proved to be an effective nanomodifier for improving the permeability of PES membranes and the antifouling ability to treat HA polluted aqueous streams.


Asunto(s)
Sustancias Húmicas , Nanocompuestos , Arcilla , Compuestos Férricos , Sustancias Húmicas/análisis , Membranas Artificiales , Polímeros , Sulfonas
5.
Sci Total Environ ; 792: 148479, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34465066

RESUMEN

This review paper aims to identify the main sources of carbon dioxide (CO2) emissions from wastewater treatment plants (WWTPs) and highlights the technologies developed for CO2 capture in this milieu. CO2 is emitted in all the operational units of conventional WWTPs and even after the disposal of treated effluents and sludges. CO2 emissions from wastewater can be captured or mitigated by several technologies such as the production of biochar from sludge, the application of constructed wetlands (CWs), the treatment of wastewater in microbial electrochemical processes (microbial electrosynthesis, MES; microbial electrolytic carbon capture, MECC; in microbial carbon capture, MCC), and via microalgal cultivation. Sludge-to-biochar and CW systems showed a high cost-effectiveness in the capture of CO2, while MES, MECC, MCC technologies, and microalgal cultivation offered efficient capture of CO2 with associate production of value-added by-products. At the state-of-the-art, these technologies, utilized for carbon capture and utilization from wastewater, require more research for further configuration, development and cost-effectiveness. Moreover, the integration of these technologies has a potential internal rate of return (IRR) that could equate the operation or provide additional revenue to wastewater management. In the context of circular economy, these carbon capture technologies will pave the way for new sustainable concepts of WWTPs, as an essential element for the mitigation of climate change fostering the transition to a decarbonised economy.


Asunto(s)
Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Electrólisis , Gases de Efecto Invernadero/análisis , Aguas Residuales , Humedales
6.
Sci Total Environ ; 754: 142177, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254914

RESUMEN

Many emerging contaminants (ECs) are not currently removed by conventional water treatment methods and consequently, often reach the aquatic environment. In the absence of proper management strategies, ECs can accumulate in water bodies, which poses potential environmental and health risks. This paper critically reviews, for the first time, the reported occurrence and treatment of ECs in the Middle Eastern and North Africa (MENA) region. The paper also provides recommendations to properly manage EC risks. In the MENA region, pharmaceuticals and personal care products (PPCPs) have been detected in surface water, seawater, groundwater, and wastewater treatment plants. A focus on surface water in the published literature suggests that studies are skewed towards worldwide trends, whereas studies on ECs in seawater are of great importance in the study region. The types of PPCPs detected in the MENA region vary, but anti-inflammatories and antibiotics dominate. In comparison, microplastics have mainly been studied in surface waters and seawater with much less focus on drinking water. The majority of microplastics in the region are secondary types resulting from the degradation of larger plastic debris; polyethylene (PE) and polypropylene (PP) fibers are the most frequently detected polymers, which are indicative of local anthropogenic sources. Research progress on ECs varies between countries, having received more attention in Iran and Tunisia. Most MENA countries have now begun monitoring water bodies for ECs; however, studies are still lacking in some countries including Sudan, Djibouti, Syria, Ethiopia, and Bahrain. Based on this review, critical knowledge gaps and research needs are identified. Countries in the MENA region require further research on a broader range of EC types. Overall, water pollution due to the use and release of ECs can be tackled by improving public awareness, public campaigns, government intervention, and advanced monitoring and treatment methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...